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Abstract. Many properties of alloyed chalcogenide glasses can be closely correlated with the average co-
ordination of these compounds. This is the case, for example, of the ultrasonic constants, dilatometric
softening temperature and the vibrational densities of states. What is striking, however, is that, at a given
average coordination, these properties are nevertheless almost independent of the elemental composition.
Here, we report on some numerical verification of this experimental rule as applied to the vibrational
density of states. We find that this rule is not exact but holds qualitatively well over a wide range of

compositions and local chemical correlations.

PACS. 63.50.+x Vibrational states in disordered systems — 61.43.Fs Glasses

1 Introduction

Establishing the microscopic properties of disordered ma-
terials based on macroscopic probes is a difficult endeavor:
the characteristic isotropy of these materials limits mea-
surements to mostly scalar, orientation-averaged proper-
ties, reducing significantly the amount of information ac-
cessible compared with, for example, what is available in
crystals.

This is the case for scattering experiments. X-ray pro-
vides, after Fourier transform, only an isotropic radial dis-
tribution function. This smooth, structureless curve be-
yond medium-range order, can be reproduced numerically
with a wide range of mutually inconsistent models as
shown in reverse Monte-Carlo simulations [1]. Experimen-
tal scattering functions cannot provide, therefore, positive
discrimination between models, they can only eliminate
some of the bad models.

The experimental evidence for an isocoordinate rule
in chalcogenide glasses provides yet another example of
the difficulty of extracting microscopic information from
these disordered materials. This rule states that for a given
average coordination, samples with varying compositions
will display identical properties. The isocoordinate rule
has already been noted for a wealth of mechanical and
thermal properties such as ultrasonic elastic constants[2],
hole burning relaxation[3], and glass transition tempera-
tures and hardness[4], and was found to hold for the more
complex vibrational density of states [5-7]: systems as dif-
ferent as SegGes and SezAsy with an average coordination
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of (r) = 2.4 show a similar VDOS in the transverse acous-
tic (TA) region (see, for example, Ref. [5] Fig. 5).

The vibrational isocoordinate rule (VIR) has only been
checked experimentally, until now, with the inherent lim-
itations due to atomic species available and glass phase
diagrams. This leaves some questions open regarding the
range of validity of this rule as well as its accuracy. In
this paper, we present the results of direct numerical sim-
ulations on a model system with simplified dynamics that
provide a bound on a few of these points.

2 Details of the simulation

The simulations proceed as follows. We start with a 4 096-
atom cell of Sillium — a perfectly tetravalent continuous-
random network — constructed by Djordjevic et al. [8] fol-
lowing the prescription of Wooten, Winer and Weaire [9];
this network provides an idealized model with the appro-
priate initial topology. We then remove bonds at random
in the network until we reach the desired concentration of
2-, 3- and 4-fold atoms. In the first stage of the simulation,
we do not enforce any extra correlation and the final net-
work corresponds to a perfectly random amorphous alloy.
We then relax the network using a Kirkwood potential
with interactions based on the table of neighbors, not on

distance.
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where o and [ are taken to be the same for all bonds
and Lg is the ideal bond length. We take a ratio of three-
body to two-body force, 8/a = 0.2, typical of tetrahedral
semiconductors [13].

The resulting network is one of identical atoms ex-
cept for the coordination. This is not too far from SeAsGe
chalcogenides; because they sit side by side in the same
row, these elements share very similar masses, elastic prop-
erties and Pauling electronegativities. As an additional
simplification, we take the same tetrahedral angle for all
triplets in the network. Real Se and As, in the respective
2- and 3-fold configuration, have angles that deviate from
this value and tend towards 120 degrees. This simplifica-
tion is less drastic than it appears because of the relatively
low coordination, allowing a significant degree of flexibil-
ity in the network: angles can then be accommodated at
very little elastic cost. A more serious concern is that al-
though the 3 elements have very similar elastic constants
in a 4-fold environment, the bonding gets stronger as the
coordination decreases. Experimentally this effect shows
up mostly in the high frequency TO peak [5]. Moreover,
because of the square root scaling, the deviation becomes
apparent only between samples at the extreme of the com-
position scale.

To verify the isocoordinate rule, we prepare 3 different
compositions at each average coordination from (r) = 2.2
to 3.0 (except at (r) = 2.2, where only two different cells
are created). We then proceed to distribute at random a
desired proportion of 2-; 3- and 4-fold atoms. The three
configurations typically correspond to (1) a configuration
with a maximum of 3-fold atoms for the given average
coordination, (2) one with a maximum of 4-fold, and (3) a
composition between the two. For example, at (r) = 3.0,
we create a configuration with 50% of 2-fold and 50% of
4-fold atoms, one with 25, 50 and 25% of 2-, 3-, and 4-fold
atoms, respectively, and one with 100% of 3-fold atoms.
This gives us the widest composition range possible to
study the VIR. Because we are not constrained by the
glass forming diagram, this is also wider than what can
be achieved experimentally.

After the topology is established, each sample is re-
laxed with the Kirkwood potential, using periodic bound-
ary conditions. The 12288 x 12288 dynamical matrix is
then computed numerically on the fully relaxed config-
uration and diagonalized exactly in order to obtain the
full vibrational properties. The eigenvalues are binned and
smoothed with a Gaussian of experimental width to pro-
vide the vibrational density of states presented in this

paper.

We also introduce some chemical correlations to see
how sensitive the VIR is to local fluctuations. We study
two types of correlations: phase separation —introducing
some kind of homopolar preference — and mixing, with het-
eropolar bonds. A cost function is introduced in the bond-
distributing sub-routine and all other phases of simulation
remain the same.
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Table 1. Compositions used in this paper. All samples are
created by removing bonds from a perfectly coordinated 4096-
atom configuration while enforcing a certain proportion of 2-,
3- and 4-fold atoms.

Average composition 2-fold 3-fold 4-fold
2.2 0.80 0.20 0.00
0.90 0.00 0.10

2.4 0.60 0.40 0.00
0.70 0.20 0.10

0.80 0.00 0.20

2.5 0.50 0.50 0.00
0.65 0.20 0.15

0.75 0.00 0.25

2.6 0.40 0.60 0.00
0.55 0.30 0.15

0.70 0.00 0.30

2.7 0.30 0.70 0.00
0.45 0.40 0.15

0.65 0.00 0.35

3.0 0.00 1.00 0.00
0.25 0.50 0.25

0.50 0.00 0.50

3 Results and discussion
3.1 The vibrational isocoordinate rule

As we decrease the average coordination of the networks,
we go through the topological rigidity threshold, at (r) =
2.4 [11]. Below this value, the network becomes floppy
and its macroscopic elastic constants vanish; local rigid-
ity remains, however, and the VDOS is mostly unaffected
except for a shift in the position of the peaks and an ac-
cumulation of modes at low frequencies. The signature of
these zero-frequency modes is reported here in the back-
ward peak formed at low frequencies and the accumulation
at the lower-end of the TO peak in networks with large
fraction of 2-fold coordinated atoms. The backward peak
corresponds to spurious imaginary frequencies associated
with floppy modes. Based on the theory of topological
rigidity, these modes are localized above the topological
rigidity threshold, p., and span the whole network below
this threshold.

Figure 1 shows the vibrational density of state as a
function of average coordination from (r) = 2.2 to 3.0.
This distribution goes through the topological rigidity
transition at (r) = 2.4. First, we note that the VIR is
approximately valid for two frequency bands: the trans-
verse acoustic band — below f = 0.7 — and transverse optic
band — above f = 1.5 — (here f is a reduced frequency).
This holds for configurations with significant difference of
composition, even configurations as different as the 100%
3-fold ws. 50-50 of 2- and 4-fold show fairly similar VDOS
in these regions. This is a wider application range than
what was measured experimentally; the data reported by
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Fig. 1. Vibrational density of state (VDOS) as a function of
frequency for a set of configurations of different composition
and average coordination. Each plot shows the VDOS for two
or three different compositions but identical average coordina-
tion. The compositions are given in Table 1. In each plot, the
choice of line goes as a function of increasing percentage of 2-
fold atoms: thick solid, dashed and thin solid. The additional
peak at low energies in this and later figures is due to floppy
modes.

Effey and Cappelletti shows that the isocoordinate rule
applies to the TA band but is not consistent in the higher
frequency region of the VDOS. This is especially true of
samples with widely different composition. The shift in
the TO peak seen in reference [5] seems to follow the con-
centration of Se, a result that is consistent with the ex-
pected increase in stiffness of the low coordinated atoms
discussed above. (The assignments of the bands, TA, LA,
LO and TO, is based on a comparison with the corre-
sponding tetrahedral crystals [12].)

Taking this into account, a second look at the fig-
ures indicates clearly that the VIR is not an exact law.
The structure of the TA peak in the configurations with
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Fig. 2. Evolution of the VDOS as a function of average co-
ordination for (r) = 2.2, 3.0 and 4.0. The shift in the overall
VDOS is explained by the significant decrease in the rigidity
of the network as the number of bonds decreases.

(r) = 3.0 shows significant variations as a function of the
concentration of 3-fold coordinated atoms. The shoulder,
slightly above f = 0.5 and present at other (r), decreases
in importance as the average coordination goes down. This
effect is not seen experimentally; the range of compositions
for the real samples, however, is much narrower than that
studied here.

Figure 1 also provides some indication about the re-
lation between specific structures in the VDOS and the
local environment. Of course, since the VIR holds well,
signatures of the specific local bonding are weak except
in the band between the TA and TO peaks, especially at
low average coordination where more modes become local-
ized. The structure around f = 1 consistently represents
the four-fold coordinated atoms. We can compare these
structures to a fully four-fold structure (Fig. 2).

The floppiness of the network is also reflected in the
TO peak. Strikingly, the width of this peak is more related
to the overall coordination of the network than to the local
bonding environment. From the work of Alben et al. [10],
the TA peak has been associated with the overall coordi-
nation while the TO peak had been ascribed to the local
tetrahedral symmetry. The vibrational density of states of
fully four-fold cells generally gives a much wider if some-
what lower TO peak with, in the case of ill-coordinated
networks, a very flat structure [14]. Such a wide peak
has generally been associated with non-tetrahedral en-
vironment but it is clear, based on the results obtained
here, that the presence of strain is also necessary. Even
at (r) = 3.0 the network contains enough floppy modes
to relax a good part of the strain: the optical modes be-
come then more localized and emerge as a relatively sharp
feature at the edge of the vibrational spectrum.

As the average coordination decreases the features in
the longitudinal acoustic (LA) and longitudinal optic (LO)
bands, around f = 1.0 and 1.4, respectively, also become
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Fig. 3. Effect of short-range correlations on the vibrational
density of state. We show here three samples at (r) = 2.6 with
40% 2-fold and 60% 3-fold atoms but different local chemi-
cal order. Bonds between similar atoms are highly favored in
the homopolar sample and highly penalized in the heteropo-
lar sample. No account of chemical cost is introduced in the
random case.

more prominent. The first is particularly sensitive to the
concentration of 4-fold atoms. This is especially clear at
the lowest average coordination where this feature is to-
tally absent in the SeggAsgy sample. At the same time,
the LA peak is shifted upward to about f = 1.15 and can
therefore be associated with the presence of 3-fold atoms.
This interpretation is in full agreement with the experi-
mental results reported by Effey and Cappelletti [5].

3.2 Correlations

The above results are all for non-correlated samples. It is
likely however, that chemical ordering might take place
in chalcogenide glasses. To address this question, we pre-
pared, at (r) = 2.6, two configurations of a 40-60 mixture
of two-fold and three-fold atoms, one with full mixing, i.e.,
heteropolar bonds strongly favored —and demixing— ho-
mopolar bonds preferred. In the first case, no 2-fold atom
is bonded to another 2-fold atom. In the second case, clus-
tering tends to take place.

Figure 3 shows the VDOS for these two cells as com-
pared with the non-correlated case already described in
the previous section. There is remarkably little difference
between these three VDOS except in the gap between the
TA and TO bands; the demixed states of the phase sepa-
rated configuration splits the TO peak slightly. The major
differences between the configurations is associated with
the LA and LO bands, between f = 1.0 and 1.5. Mixed en-
vironment emphasize significantly the peak at 1.15 while
the phase separation generates a peak at higher frequen-
cies, around f = 1.3. The average of these two effects
is clearly manifest in the non-correlated spectrum. These

The European Physical Journal B

changes in the spectrum are subtle, however, and they
cannot be checked experimentally at the moment.

The choice of (r) = 2.6 was based on some peculiar
spectra found experimentally for SepAss [5]. Although we
have been unable to reproduce the experimental behavior,
we can conclude from this section that simple two-body
correlation is not sufficient to provide the type of struc-
ture in the VDOS seen experimentally. More striking local
changes need to occur, such as pseudo-molecular construc-
tions, which give rise to localized modes [5].

4 Conclusions

The present study focuses on the ideal case of a system
with identical bonding and masses of constituent atoms.
This establishes clearly the limits and generalities of the
isocoordinate rule. However, these calculations are rele-
vant to alloy systems for which the constituents are from
adjacent columns of the periodic table (so that their elec-
tronegativities are similar) and from the same row (so that
the bonding is close to covalent and masses are close).
This assumption leaves only one parameter, G/« from
equation (1), to characterize a specific system. We can-
not, therefore, reproduce exactly the experimental data.
In particular, the absence of polarization and the Si-like
binding leads to less consistent behavior in the optical
band. In spite of these limitations, it is possible to draw
general conclusions about the applicability of the isocoor-
dinate rule.

We have examined the isocoordinate rule at average
concentrations varying from 2.2 to 3.0. This rule is not
exact but it is accurate enough to serve as a general prin-
ciple in the study of chalcogenide glasses: the variation in
VDOS between samples of widely different concentrations
but same average coordination is smaller than that be-
tween similar samples with average coordination differing
by 0.1 or 0.2.

Moreover, it appears that the VDOS is not very sensi-
tive either to the presence of correlations. Changing con-
siderably the local correlations affects very little even the
qualitative structure of the VDOS. This work also empha-
sizes the limited information in the low frequency band
about the details of chemical bonding.

Without explicitly employing the correct choice for
a, 3 for these chalcogenide glasses, we have reproduced
the experimental observation of the dependence of the
first peak only on (r). We have shown, moreover, that the
breaking of the isocoordinate rule beyond the TA peak, in
the experimental data, has two origins. Discrepancies in
the high frequency region can be associated with a varia-
tion of mass and bonding between the species in the glass,
while that in the middle of the VDOS reflect the topolog-
ical correlations and local structure.

All these results, in parallel with the experimental re-
sults obtained recently point to the fact that it is difficult
to obtain conclusive information simply from the VDOS:
if two samples have a different VDOS, it is clear that they
diverge; nothing can be said, however if they have the
same VDOS.
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